
R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 1 of 13

AUTOGEN:
The Mars 2001 Odyssey and the "Autogen" Process

By Roy Gladden

June 6, 2002
Jet Propulsion Laboratory / California Institute of Technology

Pasadena, California

Abstract

In many deep space and interplanetary missions, it is widely recognized that the scheduling of many commands to
operate a spacecraft can follow very regular patterns. In these instances, it is greatly desired to convert the
knowledge of how commands are scheduled into algorithms in order to automate the development of command
sequences. In doing so, it is possible to dramatically reduce the number of people and work-hours that are required
to develop a sequence. The development of the "autogen" process for the Mars 2001 Odyssey spacecraft is one
implementation of this concept. It combines robust scheduling algorithms with software that is compatible with pre-
existing "uplink" software, and literally reduced the duration of some sequence generation processes from weeks to
minutes. This paper outlines the "autogen" tools and processes and describes how they have been implemented for
the various phases of the Mars 2001 Odyssey mission.

What is autogen?

The term "autogen" is applied in two different ways.
First, "autogen," in its broadest sense, identifies a
process that may be used to automatically generate
sequences for a spacecraft and, second, it is a Solaris
script that has been used to facilitate this process. By
using the "autogen" script and process, a user can
rapidly build sequences for a spacecraft that may be
lengthy and complicated.

The "autogen" process has been specifically developed
to facilitate the generation of sequences where
spacecraft commands and blocks are scheduled in a
repeatable or well-understood fashion. Originally
implemented for the Mars 2001 Odyssey spacecraft,
the "autogen" process can be used to build sequences
for various missions and their mission phases,
including interplanetary cruise, aerobraking, and
science operations.

Where did it come from?

The "autogen" process and tools are a direct extension
of efforts made in support of Jet Propulsion Laboratory
(JPL) missions prior to the Mars 2001 Odyssey,
including Mars Observer, Mars Global Surveyor
(MGS), and the failed Mars '98 missions. In those and
other missions, it was recognized that the scheduling of
many commands for certain mission phases tended to
follow regular patterns. Therefore, rather than
requiring many people to spend several weeks

manually building the commands for lengthy and well-
understood command sequences, efforts were made to
develop software that would automatically schedule the
commands given certain input data. By taking the
knowledge for how commands were to be scheduled
and writing algorithms to replicate that knowledge, it
was possible to dramatically reduce the number of
people and work-hours required to develop a sequence.

Strategies for implementing these automated sequence
generators varied from project to project, but the
overall concept remained the same. However, previous
efforts generally utilized software that was not directly
compatible with pre-existing software tools that
converted these text-based and human-readable
sequences into the binary products that were sent to the
spacecraft; or the scheduling approach was clumsy in
its implementation. The development of the "autogen"
process was the next logical step and was developed on
the shoulders of these earlier and sometimes-highly
successful efforts. It combines robust scheduling
algorithms with software that is compatible with the
pre-existing "uplink" software. It literally reduced the
duration of some sequence generation processes from
weeks to minutes.

What makes it work?

The "autogen" process, as used for Mars Odyssey,
included only two major components: APGEN and the
"autogen" script.

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 2 of 13

First, APGEN, or Activity Plan Generator, is a
software program that can be used for sequence and
mission planning purposes. It is part of the suite of
tools developed by the Deep Space Mission System
(DSMS) at JPL and is a multi-mission tool, which
means that it can be tailored to many different space
missions without changing its "core" software.
APGEN was designed with a graphical user interface
that facilitates the scheduling of activities on a timeline
and includes the ability to automatically expand,
decompose, and schedule activities. Because it is a
multi-mission tool, it is required that an "adapter" write
algorithms in the tool-specific language that APGEN
utilizes to represent scheduled activities or commands,
and how system resources or states are adjusted as a
function of time and usage.

Second, the "autogen" script is a mechanism that
maximizes the JPL mission operations network
environment. It performs very simple tasks, as
follows:
� Gathers needed data files from data repositories on

the mission operations network.
� Builds other needed data files for the APGEN

scheduling algorithms based on inputs specified by
the user.

� Sets up the environment to run APGEN, including
scheduling instructions.

� Runs APGEN, which schedules the activities and
writes the sequences to files.

� Manipulates the resultant files, if needed.
� Initiates any automated sequence processors to

prepare the sequence for uplink, if appropriate.

Refer to Figure 1 for a flow chart describing this
process.

In essence, the "autogen" script simply sets up the
environment for the APGEN software to perform the
real work of building the sequence(s). Therefore, the
"guts" of the "autogen" process is in the development
of the APGEN "adaptation," where all the rules for
when and how commands are to be scheduled must be
encoded.

It should be recognized that there are several other
software tools that APGEN utilizes to perform various
functions. Similarly, the "autogen" script calls other
scripts to perform its functions. For instance, APGEN
relies upon another multi-mission software program
developed by DSMS, called "seq_review", to reformat
data files into a format that APGEN can understand;
and "autogen" relies upon several other scripts to
retrieve data files from various locations on the JPL
operations network.

Figure 1: "autogen" Flow Chart.

User inputs
command line

Build needed
files

All
required inputs

specified?

All files found?

Pre-process
option selected?

APGEN builds
sequence(s)

StopStop

StopStop

Find and retrieve
from project database

any necessary files

StopStop

APGEN initiated

Data files loaded

Activities scheduled

Sequence(s) saved

Other data file(s)
saved, if applicable

Use of Graphical
User Interface

selected?
GUI appears

Use of Graphical
User Interface

selected?

APGEN terminated

User reviews
scheduled activities

User exits APGEN

Appropriate files
stored to the project

database, if any

Automated sequence
processor initiated,

if appropriate

Note:
All steps recorded in
the “autogen” log

This sequence
identification already

exists in this directory?

Yes

No No

No

No

Yes

Yes

Yes

Yes

Yes

No

No

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 3 of 13

How was "autogen" used for Mars Odyssey?

The "autogen" process has been used in a variety of
different ways for the Mars 2001 Odyssey spacecraft.
It has been used during it's cruise, aerobraking, and
mapping phases; and in a more limited fashion to build
sequences to support the Multiple Spacecraft Per
Aperture (MSPA) activities and to build sequences to
support the transition period between the aerobraking
and the mapping phases. The types of activities that
have been scheduled during each of these phases or
activities will be discussed, along with a description of
some of the challenges that were encountered at each
step.

Interplanetary Cruise

The "cruise" phase of a mission is generally defined as
the period shortly after a spacecraft is launched from
the Earth until before it reaches it's primary destination.
These periods are generally quiescent, with short
periods of intense activity that may include trajectory
correction maneuvers (TCMs) and spacecraft and
payload tests or calibrations.

The Mars Odyssey approach to sequencing this phase
was to generate a "background" sequence that included
the regular commanding that would occur during some
pre-defined, long period of time (28 days, in this case).
This "background" sequence then provided the
foundation upon which the other spacecraft activities
were overlaid. In general, before a "background"
sequence was designed, an effort was made to plan
when the other, more intense activities were to occur in
order to ensure that the "background" sequence was
compatible.

This approach to sequencing worked rather well, and
the "autogen" process readily supported it. During this
phase, the "autogen" scheduling algorithms scheduled
the following types of commands:
� Calls to a block that commanded the spacecraft to

communicate with Earth during appropriate times.
� Commands to incrementally move the solar array

to better track the Sun.
� Commands to perform daily, weekly, and monthly

flight software diagnostics.
� Commands to perform daily star camera

diagnostics.
� Ground directives to cause the sequence modeling

software to generate a file that represented the
conditions of the spacecraft at a given instant in
time, called a "final conditions" file, or FINCON.

The development of the "autogen" algorithms during
the cruise phase provided a healthy "learning curve."

For instance, several times it was discovered that the
algorithms that were written to describe when the
ground antennas were listening to the spacecraft in a
"two-way" Doppler mode were very lacking. Three
cases arose that forced algorithm updates, as detailed
here:
� The times when the Deep Space Network (DSN)

antennas are scheduled to listen to a spacecraft are
listed in what is called a Station Allocation File
(SAF). The stations are generally "allocated"
based upon when the spacecraft is visible to the
station and depending on other scheduling
constraints. However, at each antenna, there is an
elevation specified below which the station's
transmitter can not be turned on. Therefore, while
the station is able to "hear" the spacecraft, it
cannot "talk" to it. Roughly speaking, this mode is
called "one-way", and it isn't until the transmitter
is turned on and the spacecraft receives a signal
from the station that the mode is called "two-way."
The times for when the stations can "see" the
spacecraft and when its transmitter would be
above its "transmitter on" elevation limit are
specified in what is called a station View Period
file (VP). The "autogen" scheduling algorithms
originally only took into account the SAF and not
the VP file, thereby occasionally commanding the
spacecraft to transmit science data during periods
that were considered "one-way". This, in itself, is
not a problem. Nevertheless, when a transition
occurs from the "one-way" to the "two-way"
Doppler mode, the station needs to again "lock up"
on the spacecraft's signal. During this transition,
any data that the spacecraft may be transmitting
may be lost. It was desired to avoid sending high-
priority data during these transition times,
therefore the "autogen" scheduling algorithms had
to be re-designed to take into account both data
sets (the SAF and the VP file).

� When it is desired to allow a spacecraft to have
long periods of time during which it can transmit
to the Earth, it is usually necessary to have two or
more DSN stations allocated to "track" the
spacecraft. As the first station goes out of view of
the spacecraft, the second station, located
elsewhere, can pick up its signal as the Earth
rotates and the spacecraft comes into view. This
"station handover" is often transparent to the
spacecraft. However, when the "handover" occurs,
the same issue, as described above, of needing to
be above the transmitter limit, is still in effect, and
therefore there are times during these "handovers"
when the mode would go from "two-way" to "one-
way". As before, it was undesirable to command
the spacecraft to transmit high-priority data during
the "one-way" mode, so it was necessary to once

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 4 of 13

again update the scheduling algorithms to
command the spacecraft to transmit lower-priority
data during those "handovers."

� When the axes of rotation of a DSN station are
designed so that it rotates around an axis
perpendicular to the surface of the earth (i.e. an
azimuth rotation) and then pitches up and down
with respect to the horizon (i.e. an elevation axis),
the position of the antenna is not always easy to
specify. For instance, when the elevation is
specified as 90 degrees above the horizon,
meaning that the antenna is pointed straight up, the
azimuth position is undefined since the antenna
can be in any azimuth position and still be pointed
straight up. Because the antennas can only be
articulated at some maximum rate, it is impractical
to require a station to track a spacecraft up from
the horizon and through the "straight up" position,
perform a quick turn-around, and then track it back
down the other side. Therefore, the DSN stations
that are azimuth/elevation antennas have what is
called a "keyhole", or a keep-out zone, which is a
maximum elevation above which it won't transmit
to a spacecraft. See Figure 2. This keyhole is
usually specified to be large enough to allow
sufficient time for the antenna to rotate around in
order to continue tracking the spacecraft down the
second side. This causes another period of "one-
way" communication in the middle of what would
typically be a continuous "two-way" period.
Generally speaking, for a spacecraft to be in such a
position that it is possible for a station to track it
through the keyhole is very rare, but it did occur to
Odyssey during it's cruise phase. Therefore, the
"autogen" algorithms had to be updated to once
again schedule commands to have the spacecraft
transmit lower-priority data during that time
frame.

These three examples are outlined here for the
intention of showing that there were very specific
instances when the scheduling algorithms were
insufficient for the purposes at hand and it was
necessary to redesign them. Nevertheless, even though

the "autogen" scheduling algorithms were a new
development, they turned out to be quite robust. In
fact, during Mars Odyssey's cruise phase, there were no
instances when the background sequence needed to be
modified to accommodate the other planned, less
regular activities, such as the TCMs or other
calibrations. In all cases, these other activities were
simply "overlaid" on top of the pre-developed
"background" sequences.

During each sequence build, there was a need to send
one-time spacecraft commands for general
"housekeeping" or spacecraft configuration
maintenance purposes. In these cases, rather than
modify the scheduling algorithms for the "background"
sequence, a short sequence was developed and then
"merged" in. In the rare cases when it was actually
necessary to modify the "background" sequence, the
changes were generally very minor and were made to
accommodate special circumstances, and almost never
to correct some significant shortcoming of the
scheduling algorithms.

There was only one instance during the cruise phase
when the spacecraft went into a "safe mode", thereby
stopping all of the onboard sequences. Once the
situation was resolved, the original "background"
sequence was edited to simply remove all the
commands before the new desired sequence restart
time; and the sequence was again transmitted to the
spacecraft.

Aerobraking

The "aerobraking" phase of the Mars Odyssey mission
was defined as the period immediately after the
spacecraft performed its Mars Orbital Insertion until
the spacecraft was placed into its operational orbit.
During this period, the spacecraft used the atmosphere
of Mars to dissipate its orbital energy, thereby reducing
its orbital period "for free" and saving fuel. This phase
was characterized by highly unpredictable changes in
the spacecraft's orbital period, which was a function of
the variability in the density of the Martian atmosphere.
With each orbit, the atmosphere would impart a change
in the spacecraft's velocity. This "delta-V" was
somewhat erratic and therefore made it difficult to
predict what the orbital characteristics of the spacecraft
would be very far in advance.

At the beginning of the aerobraking phase, the Mars
Odyssey navigation team was only able to predict a
few orbits ahead to the accuracy desired because the
orbit was so large; the spacecraft at this time had an
orbital period of approximately 18 hours. During these
large orbits, a sequence would be built with a span of

Keyhole (exaggerated)

Azimuth Rotation

Elevation Rotation

Figure 2: Azimuth/Elevation Diagram with
"Keyhole."

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 5 of 13

only one "primary" orbit and one additional "backup"
orbit. The "backup" orbit concept was implemented to
allow the spacecraft to continue aerobraking in the
event that the spacecraft operators were unable to
transmit the next sequence to the spacecraft for any
reason.

As the orbit contracted throughout the aerobraking
phase, it was necessary for the navigation team to
predict more and more orbits into the future in order to
have enough time to prepare a sequence. In fact, at the
end of the aerobraking phase, as the orbital period
approached two hours, the navigation team was
predicting more than 30 orbits into the future. The
very first orbit in each of these predictions was a
reconstruction of the most recent orbit for which there
was reliable data that described the spacecraft's orbital
characteristics. Immediately following were several
orbits that were extrapolated but not used in the
development of the sequence because they had "already
occurred" but for which there had been insufficient
time to reconstruct, whether for lack of data or due to
schedule constraints. Following these were several
orbits, also extrapolated, from which the sequences
were built. At the end of the aerobraking phase,
sequences were being built for six "primary" orbits and
three additional "backup" orbits.

The inability to predict the spacecraft's orbital
parameters far into the future required that sequences
be built and transmitted to the spacecraft very often,
sometimes as often as every six hours and sometimes
with as little sequence development time as three and
one-half hours. Because of this highly constrained
schedule, software called the "Automated Sequence
Processor," or ASP, was used to automatically process
the sequence. This processing included the generation
of sequence review files, the construction of the uplink
products, and the distribution of all of the appropriate
files to the correct locations in preparation for
transmitting the sequence to the spacecraft.

To effectively utilize the ASP, the sequencing
approach needed to be very straightforward.
Therefore, the aerobraking sequences were designed
with a heavy dependence on onboard blocks. For each
"drag pass", or period during which the spacecraft
would pass through its periapsis, there was only one
command that needed to be sent to the spacecraft. This
command was actually a "block call" that initiated one
or more of these onboard blocks. The block call had
many parameters that controlled how it should issue
commands to the spacecraft, including durations
between commands, switches to enable or disable
different parts of the block, and filenames that were

utilized or otherwise managed by the block. There
were only three major blocks that needed to be
scheduled during the aerobraking phase of the mission,
as follows:
1) the "aero" block, which was the block utilized

during each "drag pass",
2) the "abm" block, which was utilized only when an

aerobraking maneuver, or ABM, was needed to
raise or lower the spacecraft's periapsis, and

3) the "payload_cal" block, which was only used
twice during the aerobraking phase to utilize one
of the onboard instruments to take an image of
Mars.

The need to facilitate quick sequence builds was only
part of the problem of sequencing during the
aerobraking phase. As mentioned before, with each
predicted orbit in the future there was an associated
increase in the uncertainty of that orbit's timing. The
spacecraft had an onboard software capability to
autonomously determine the time of its periapsis
passage. Using this "periapsis timing estimator", or
PTE, the spacecraft was then able to compare this time
with the expected time of the periapsis passage and
thus calculate the cumulative timing offset from orbit
to orbit. It was unable to predict into the future, but it
could generally correct for past deviations.

It was desired to utilize this PTE capability to "shift"
the sequences around to better center the spacecraft's
activities at periapsis (or apoapsis, in the case of the
ABMs). However, the spacecraft's command software
requires that each command have a time specified at
which it should be initiated. This made it impossible to
directly have a flexible start time for these block calls.
To overcome this problem, the concept of the "seq"
blocks was introduced.

The "seq" concept utilized a "parent" block that would
be called in the place of the blocks mentioned above.
These "seq" blocks had three primary functions:
1) to identify the timing offset of the orbit as

calculated by the PTE flight software object,
2) to calculate the time at which the previously

mentioned blocks should be kicked off as a
function of this offset, and

3) to initiate the blocks at the appropriate times.

The navigation team defined the maximum cumulative
uncertainty in the timing of the orbits throughout a
sequence, and the "seq" blocks were scheduled this
duration earlier than the "regular" blocks would have
been scheduled. To illustrate this capability, see Figure
3 and Table 1.

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 6 of 13

Time
1. Expected periapsis time

5. Deviation as calculated by PTE

4. Time of scheduled “seq” block

2. Expected start time of “regular” block

3. Maximum allowable deviation

6/7.

8. “regular” block initiated by “seq” block at the adjusted time

“seq” block initiated and calculates timing offset

Figure 3: How The "Seq" Concept Is Utilized to Shift a Block Call.

Table 1: How the "Seq" Concept Works
 1. Navigation team estimates expected time of periapsis passage.
2. Expected start time of “regular” block call is calculated.
3. Maximum allowable deviation for the sequence is determined.
4. “seq” block is scheduled at expected start time of “regular” block minus this maximum deviation.

Sequence is sent to the spacecraft.
5. PTE determines experienced timing deviation.
6. “seq” block is initiated onboard the spacecraft.
7. “seq” block calculates time to initiate “regular” block based on expected start time minus the actual

deviation.
8. “seq” block initiates the “regular” block at the adjusted time.

The use of this "seq" structure allowed the
development of "autogen" scheduling algorithms that
were quite robust. In addition, the APGEN software
was utilized in a "batch" mode, disabling its graphical-
user interface, and coupled with the capabilities of the
ASP. This facilitated the rapid development of
sequences during the aerobraking phase; with the
issuance of one command line, a sequence was
automatically built, modeled, converted to the uplink
binary file, and distributed to the DSN in preparation
for uplink in less than twenty minutes.

The "autogen" tools scheduled the following types of
commands:

� The "seq" blocks, in three varieties: the "aero_seq"
block for the "drag pass", the "abm_seq" block for
the ABMs, and the "themis_seq" block for the
science observations.

� A command to "kill" any previous sequence that
may be operating.

� Ground directives to suppress the transmission of
commands to the spacecraft during times when the
antenna was not pointed towards Earth, as
calculated from the scheduled blocks.

� Ground directives to cause the sequence modeling
software to generate FINCONs.

The "autogen"/ASP combination turned out to be
remarkably robust and there were only three command

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 7 of 13

builds (in over 200 builds!) throughout the entire
aerobraking phase during which the "autogen" tools
were called into question. In the end, each of these
instances turned out to further validate the tool and
concept and showed that it behaved exactly as it should
have. The following outlines these instances:
� As shown before, the "autogen" scripts were

designed to perform a variety of functions before it
attempted to build a sequence, namely collecting
and building some data files. If a user attempted
to perform a "re-build" of a sequence in a
subdirectory where some of the data files already
existed, the "autogen" scripts were designed to not
attempt to re-collect and re-generate the files, but
to simply run the scheduling algorithms on the pre-
existing files. This was an intentional design
feature that allows a user to perform sequence re-
builds very easily if only one or a few of the many
input files have changed from previous sequence
builds. During aerobraking, each sequence was
built with one or more "primary" orbits and one or
more "backup" orbits. Because the "backup"
orbits were contingency orbits, when a new
sequence was sent to the spacecraft the first thing
it would do was stop the pre-existing sequence
before it had the chance to initiate any of the
commands for the "backup" orbits. In order to do
this in a timely fashion, it was necessary to track
when each of the block calls for the "aero_seq"
blocks were scheduled. In addition, the "killing"
of the pre-existing sequence was always intended
to be scheduled at least a minute before the next
"aero_seq" block call would occur. In cases where
a sequence was re-generated, the "backing up" of
the "kill" would increment earlier and earlier,
which was an intended behavior. During one
particular build, the user noticed this effect and
became alarmed since they did not understand the
behavior of the timing shifts. Therefore, in order
to prevent this effect from occurring again, the
sequence build procedure was modified to ensure
that whenever a sequence needed to be re-
generated, the user would start "from scratch" with
an incremented sequence identification name,
thereby avoiding the issue altogether. To the user,
this issue initially appeared to be a problem with
the "autogen" scheduling algorithms because the
commands were being scheduled earlier than
expected, but eventually it was concluded that the
issue was a weakness in the sequence generation
process.

� In order to provide flexibility to the "autogen"
scheduling algorithms, many of the commands that
are scheduled had parameters specified that would
change how, when, or if they were scheduled.
These parameters were read into APGEN, which

then interpreted those parameters and scheduled
the commands appropriately. During aerobraking,
it was desired to re-evaluate on a weekly basis
how "autogen" scheduled the block calls.
Therefore, the concept of the "reset sheet" was
implemented to allow a specific set of parameters
to govern how the sequences were developed over
the course of a week. Many of the parameters on
this "reset sheet" were parameters that were simply
passed to the blocks themselves. Other parameters
were specific filenames that needed to be sent to
the spacecraft for command purposes. In some
cases, it was desired to allow several filenames to
be listed for a particular parameter and then to
have the "autogen" schedulers extract the correct
filename based upon the orbit number and/or some
other parameters. In this way, it was possible to
specify many filenames for a single parameter that
could be used over the course of a week without
having to revise the "reset sheet". Constructing
arrays that would facilitate this multiple parameter
capability was designed as part of the "reset sheet".
In one instance, one of these arrays in the reset
sheet had been incorrectly specified and the
sequence build failed. The "autogen" algorithms
had been designed to terminate the sequence build
process in just such an eventuality, and it took
some investigation to determine the root cause of
the termination. The solution was simply to
correct the array in the reset sheet. Once again, the
scheduling algorithms were called into question,
but it turned out that "autogen" was behaving
correctly.

� As aerobraking progressed and the spacecraft's
orbital period became shorter and shorter,
occasionally it was discovered that the sequences
from one orbit to the next nearly "overlapped"
each other. To prevent against this eventuality,
much up-front analysis was performed to ensure
that the "reset sheet" was correctly specified and
would be valid throughout the entire "reset
period," usually one week in duration. However,
some of this analysis was done without taking into
account the uncertainty in the timing of the orbits.
The "autogen" scheduling algorithms would output
a ground directive to write a FINCON at the
expected end of the block call for each "drag" pass
plus the total accumulated uncertainty of the
orbital timing, as discussed above. For subsequent
sequences, the times of these FINCONs were used
to determine the start time of the sequences. For
the shorter orbits when the sequences nearly
overlapped each other, these FINCON directives
were actually scheduled to occur after the
scheduled time for the next "aero_seq" block call.
This condition was actually acceptable for a given

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 8 of 13

sequence. The problem lies in the development of
the next sequence. When it came time to build the
next sequence, the start time would be extracted
from the previous FINCON, as expected.
However, due to the "backing up" of the
commands to "kill" the previous sequence in a
timely fashion, as mentioned earlier, the first
commands in the new sequence would not be
output to the sequence file because their start times
would be prior to the sequence start time. This
condition was unacceptable, and it was decided to
adjust how the FINCON directives were scheduled
by "autogen" in order to remove the delay in their
scheduled times based upon the accumulated
uncertainty of the orbital timing. This solved the
problem for most of the final sequences, but there
were a few instances when the times of the
FINCON directives had to be manually moved by
the sequence engineer to avoid this problem. For
this issue, even though a change to the scheduling
algorithms was required, it was not related to how
the spacecraft commands were scheduled, only in
the FINCON ground directive, which facilitates
ground modeling.

The remarkable performance of the "autogen" strategy
is even more impressive considering that this was a
"first use" situation; the sequence build process had
never previously been directly tied to the ASP. In
addition, it is noteworthy that the "autogen" strategy
was readily capable of supporting the highly complex
nature of the sequence structure during this mission
phase. With very little early testing and on a short
turn-around basis, the "autogen" algorithms were
developed, deployed, and fully utilized to support this
major mission phase in a profoundly successful
manner.

Mapping

The "mapping" phase of the Mars Odyssey mission
was defined as the period after the aerobraking phase
had completed and once the spacecraft had achieved its
operational orbit and until the end of the prime
mission. This phase tends to be very regular in its
activities, but also very active. It is characterized by
the same types of "housekeeping" activities as during
the cruise phase, with the added complexity of orbital
geometric events, such as Earth occultations and Solar
eclipses, and with the demands of facilitating the
mission's science objectives.

The Mars Odyssey approach to sequencing this phase
is very similar to the sequencing approach used during
the cruise phase, and once again includes the use of a
"background" sequence that performs the regular,

engineering commanding of the mission for a long
period of time (once again, 28 days). In addition,
science activities are overlaid on this sequence and
there are occasional periods when other engineering
activities must be scheduled.

The "autogen" approach works as well for the mapping
phase as it did for the cruise phase. The scheduling
algorithms schedule the following types of commands:
� Calls to a block that commands the spacecraft to

communicate with Earth during appropriate times.
� Commands to perform daily, weekly, and monthly

flight software diagnostics.
� Commands to perform daily star camera

diagnostics.
� Calls to a block that cause the reaction wheels to

be desaturated.
� Commands to change the rate at which data is

transmitted to the Earth based upon the diameter of
the DSN antenna that is allocated.

� Ground directives to suppress the transmission of
commands to the spacecraft during times when it's
antenna is not pointed towards Earth, when the
spacecraft's low-gain antenna is selected as the
primary receiver, and when Mars occults the
spacecraft's view of Earth.

� Ground directives to cause the sequence modeling
software to generate FINCONs.

At the time of this writing, the mapping phase has been
progressing smoothly. There have been no major
problems with either the spacecraft or the "autogen"
process or tools.

MSPA and Relay Coordination

During the aerobraking and the mapping phases of the
Mars Odyssey mission, there have been times when the
Mars Odyssey spacecraft and the Mars Global
Surveyor needed to "share" the same DSN stations in
order to perform their missions. The technique of
having a single antenna "listen" to more than one
spacecraft at a time, and transmit to one of them, is
called "Multiple Spacecraft Per Aperture", or MSPA.

While modeling a sequence for a spacecraft, a file is
generated that contains "keywords" which are used by
the DSN operators to ensure that the antenna tracks and
transmits to the right spacecraft at the right time. Each
spacecraft produces one set of these instructions for a
period of time. Since each station is usually only
allocated to track one spacecraft at a time, the sets of
instructions that are sent to a single station from
multiple spacecraft almost never overlap temporally,
thereby avoiding any contradicting "keywords".

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 9 of 13

However, in the cases of MSPA passes, it is necessary
to ensure that a given station is instructed to transmit to
only one spacecraft at a time, even though the station is
capable of receiving data from multiple spacecraft
simultaneously. In order to do this, a ground directive
must be produced for the additional spacecraft that
"suppresses" the use of the station transmitter during
that period. This ground directive is translated into the
"keywords" that are provided to the DSN station,
thereby ensuring that the antenna is instructed to
transmit to only one spacecraft at a time.

To appropriately schedule these "suppressions", heavy
coordination must take place between the operations
teams for the multiple spacecraft. Some decisions must
be made as to how long the transmitter will be
allocated to each spacecraft during the DSN pass.
During the Mars Odyssey aerobraking phase, there was
a regular pattern to how the station's transmitter time
was allocated to each spacecraft. Refer to Figure 4 for
a diagram outlining this pattern.

As can be seen in the diagram, both stations were
allocated to both spacecraft during the same period of
time, with an overlap of several hours between station
allocations. For Station 1, the station was allocated to
Mars Odyssey with a request for the transmitter, while
for MGS it was allocated with no request for the
transmitter. For Station 2, the station was allocated
with the transmitter requested for both spacecraft.

Under normal circumstances, the "keyword" file that
was generated for Mars Odyssey would have instructed
the transmitter for Station 2 to begin transmitting to the
spacecraft at the very beginning of its allocation. The
same would have happened for MGS because its
allocation for Station 2 also requested the transmitter.

This condition would have caused contradictory
"keywords" to be sent to the DSN station, erroneously
instructing it to transmit to both spacecraft. Because
there was a requirement to have continuous transmitter
coverage for Mars Odyssey during its aerobraking
phase, it would have been necessary to suppress Station
2's transmitter for MGS throughout its allocation,
thereby denying MGS any transmitter time at all in this
scenario.

The approach illustrated in Figure 4 allowed MGS to
have at least some transmitter time where previously
there would have been none. This was accomplished
by utilizing the tail end of Station 1's allocation for
Mars Odyssey, which would have previously gone
unused, by suppressing Station 2's transmitter during
the beginning portion of its allocation to Mars
Odyssey, thereby delaying the "transmitter handover"
until the end of Station 1's allocation. This "down
time" for Station 2's transmitter was then free to be
utilized by MGS. To ensure no overlap in the
transmitter times for each spacecraft, the latter half of
Station 2's allocation to MGS needed to be suppressed
early enough to turn off the transmitter and allow time
for the station to be reconfigured in time to transmit to
Odyssey.

It was originally expected that the use of this MSPA
capability would occur quite often. Therefore, an
"autogen" process was developed to perform the
following tasks:
1) Read in the SAF and VP files for both spacecraft.
2) Determine if the transmitter had been requested for

each allocation.
3) Determine if the same transmitter had been

requested for both spacecraft.

Transmitter Available

Transmitter Available

Transmitter Available Downlink Only (Transmitter Suppressed)

Downlink Only
(Transmitter Suppressed)

Odyssey Allocation

MGS Allocations

Station 1

Station 2

Downlink Only (Transmitter Not Requested)

Transmitter Handoff

Station 1

Station 2

Figure 4: The MSPA Allocation Pattern for Mars Odyssey and Mars Global Surveyor.

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 10 of 13

4) Schedule a transmitter suppression for the
beginning of the overlapping transmitter request
until such time as the "outgoing" allocation
concluded for Mars Odyssey.

5) Schedule a transmitter suppression from some
period of time before the end of the previous
suppression until the end of the overlapping
transmitter request for MGS.

6) Construct a distinct sequence file for each
spacecraft containing the DSN transmitter
suppression directives.

In practice, it was only necessary to perform MSPAs
three times throughout Odyssey's aerobraking phase
and it would have been very simple to construct these
DSN transmitter suppression directives manually.
However, the development of the MSPA capability
provided two major benefits, as follows:
1) The ability to read in data sets for multiple

spacecraft was a new capability. Previously, the
"autogen" algorithms made no distinction between
SAFs for multiple spacecraft, and would simply
assume that all of the data applied to one
spacecraft.

2) The ability to write out multiple sequence files was
also a new capability. Previously, the "autogen"
algorithms would only cause APGEN to write out
one sequence file for a pre-specified spacecraft.

Both of these new capabilities will be extensively used
in the near future to perform "relay" coordination
between Mars Odyssey and the twin Mars Exploration
Rovers, which will land on Mars near the beginning of
2004. The rovers will transmit data to Odyssey, which
will store the data for a short time and re-play it back to
Earth at its earliest opportunity. These two capabilities
will allow scheduling algorithms to be developed to
automatically schedule the commands and activities
that must occur on all three spacecraft to make this
happen. In addition, it is expected that not only will
these algorithms have to coordinate activities between
these three spacecraft, but that coordination must also
occur between other orbiting and landed spacecraft on
Mars during that timeframe, such as MGS, Mars
Express Orbiter, and Beagle II. It is very clear that the
development of these abilities to manage data sets for
many spacecraft will provide long-ranging benefits in
the future when there will be increased coordination
between multiple projects and greater contention for
ground resources, such as DSN allocation time.

Transition from Aerobraking to Mapping

Immediately following Mars Odyssey's aerobraking
phase, there was a period of nearly two months called
the "transition to mapping" period. During this period,

the spacecraft was primed to perform its principal
mission by deploying additional hardware and
performing calibrations. There were no standard
sequences that needed to be operational during this
time, and the spacecraft was left in a fairly quiescent
state, with the exception of the unique and specially
planned activities that needed to occur.

At the beginning of this transition period, the ground
stations were allocated in such a way as to be
continuously communicating with the spacecraft except
when Mars occulted the Earth. In addition, the ground
operators were scheduled to be available to operate the
spacecraft twenty-four hours a day. During this
"continuous coverage" period, it was very easy for the
ground operators to interactively instruct the spacecraft
to transmit high-priority data when the spacecraft was
in "two-way" communication with the Earth, and to
avoid transmitting this high-priority data at other times.
When the continuous staffing and DSN allocation
periods came to an end, the spacecraft would be left in
a state where it would attempt to transmit the higher-
priority data regardless of whether there is a ground
station visible and allocated to receive the data. In this
way, some high-priority data could have been lost.

This condition was recognized near the end of the
aerobraking phase, and it became desirable to put a
very simple "background" sequence onboard the
spacecraft that would instruct the spacecraft to transmit
the high-priority data only when appropriate.
Therefore, an "autogen" process was rapidly deployed
to schedule these changes. By adapting the scheduling
algorithms from the previously mentioned phases, it
was relatively straightforward to develop an automated
process to build these "background" sequences.

The resulting sequences were very simple and literally
only contained commands to change the type of data
that the spacecraft would transmit. Nevertheless, it
was discovered that the "autogen" modeling did not
schedule the commands correctly in every case when
there were station "handovers." However, it was only
about 2% of the scheduled commands that had to be
manually adjusted before the sequence was ready to be
transmitted to the spacecraft.

Even though the "autogen"-developed sequence wasn't
perfect, it still dramatically reduced the amount of
effort that would have been required to build these
sequences manually. Therefore, this effort admirably
illustrated how the "autogen" process was rapidly
adapted to solve a potentially daunting command
scheduling problem that would otherwise have required
much manual effort.

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 11 of 13

What lessons were learned?

The development of the "autogen" process for Mars
Odyssey has provided an excellent case study to
illustrate that properly developed scheduling
algorithms can dramatically reduce sequence
development time and effort. In addition, the
foundation provided by the Mars Odyssey adaptations
readily serves as the foundation for sequence
development efforts for other spacecraft. For example,
a brief demonstration for the Genesis spacecraft, also
managed by the Jet Propulsion Laboratory, showed that
the "autogen" process could be quickly adapted and
fully functional for another mission in as little as 30
work-hours.

It is essential to clarify some of the considerations
taken when developing the "autogen" process for Mars
Odyssey that make this kind of flexibility possible, as
follows:
� Keep the sequencing approach simple. If it was

discovered that a series of commands was being
repeated consistently, then the appropriate
development of a block was a powerful tool in
simplifying sequences and reducing the size of
command loads. In addition, blocks, when
designed and utilized intelligently, dramatically
streamlined the scheduling of commands within
sequences. Nevertheless, the proper balance had
to be found between the complexity of the
available blocks and intelligent sequencing.

� Parameterize everything. Every aspect of the
scheduling algorithms that could have been
parameterized was parameterized and made
accessible to the user. In this way, the user
retained control over how things were scheduled
without being required to directly adjust the
scheduling algorithms when small changes were
needed. In practice, it was useful to encode
several techniques for scheduling the same
commands to provide additional flexibility. For
instance, during the mapping phase for Mars
Odyssey, the user had the ability to schedule DSN
communications commands on a once-per-orbit
basis, or schedule them whenever a DSN station is
in view. In addition, the range of parameters for
Mars Odyssey also included, among other things,
the durations between certain commands and
switches to schedule or not to schedule an activity.
Having all these "knobs and dials" available to the
user provided great flexibility when developing a
sequence.

� Do your work up-front to analyze the scenarios. If
the sequencing approach to a mission phase is
analyzed thoroughly enough, it is conceivable that
a sequence scheduler could be developed prior to

execution and never be modified again. However,
in practice, many circumstances may require
modifications to the sequence scheduling software.
Nevertheless, early and significant efforts to detail
how a mission phase should be sequenced may
dramatically simplify the efforts required to
actually build a sequence and reduce the amount of
last-minute coding that is often required.

� The scheduling algorithms rarely produce a perfect
sequence, particularly for long sequences. The
more complex the sequence, the more likely that
errors exist. If it discovered that there are minor
errors with the sequence, there should be no reason
why the automatically scheduled sequence
shouldn't be manually edited to fix it. If the
scheduler is systematically not scheduling the
sequences correctly, then there should be no fear
of updating the scheduling algorithms in order to
avoid being required to make many manual edits
to the sequence.

� The "autogen" approach has been designed
exclusively to build sequences; it has not been
designed to supplant any sequence checking
efforts that must be performed on a sequence prior
to being uplinked to a spacecraft. It has been
discovered that when developing the scheduling
algorithms for Mars Odyssey, only those models
that are necessary for the scheduling of the
commands are required to be accessible by the
scheduling algorithms. It has proved
advantageous to keep the functions of sequence
generation and sequence checking separate and
distinct. The function of the "autogen" schedulers
is to build a sequence that meets the intentions of
the sequence developers, whereas the function of
any sequence checking software is to ensure that
the sequence is safe to be transmitted to the
spacecraft. Linking the two functions could
complicate configuration management efforts,
compromise spacecraft safety, and reduce the
flexibility needed to occasionally change the
scheduling algorithms.

� Don't place the sequence schedulers under
configuration management until things have
stabilized. For Mars Odyssey, it was discovered
that even early efforts to develop the sequence
scheduling software were unable to anticipate
some of the realities of actually operating the
spacecraft. For instance, during Mars Odyssey's
mapping phase, it was quickly discovered that the
sheer size of a 28-day sequence was simply too
large for the spacecraft's onboard sequence
management software to handle. A short-term
solution required that the 28-day sequence be cut
into four pieces, each 7 days in duration. The
long-term solution was the development of two

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 12 of 13

new spacecraft blocks that would dramatically
reduce the number of commands that needed to be
sent to the spacecraft to achieve the same effect,
and the reduction of the length of many of the
onboard block names. Had the schedulers been
placed under configuration management early, it
would have been more difficult to adjust them in a
timely fashion to meet the changing needs of the
spacecraft operators.

� The algorithms will do exactly what you tell them
to do. Indeed, even though the "autogen"
scheduling software has worked dramatically well,
all instances where this process has failed has been
the result of bad input files, bad input parameters,
or algorithms that were not designed properly in
the first place.

Can you put this automated sequencing onboard the
spacecraft?

It is probably better to ask, "Should you put this
automated sequencing onboard the spacecraft?" This
document is not intended to be a discussion on the
benefits of ground automation versus onboard
autonomy; nevertheless, some discussion is warranted.

Historically, the development of high-level spacecraft
autonomy to control a spacecraft has proven to be
expensive and questionably useful. However, onboard
autonomy has been used in the past to great success to
perform certain low-level activities, such as attitude
and orbit control, power and thermal management, and
payload monitoring. Nevertheless, onboard autonomy
often has the following disadvantages:
� Onboard autonomy is often programmed as part of

the flight software. Therefore, when updates to the
algorithms are needed, a flight software "patch" or
complete code replacement is necessary. These
changes are generally high-risk activities.

� Comprehensive autonomy that will be fully
capable of handling all or even most circumstances
and eventualities is difficult to design. This makes
the development of high-level autonomy
prohibitively time-consuming and expensive. In
addition, as the autonomy becomes more and more
capable (i.e.: complex), the testing of that same
autonomy becomes exponentially more difficult.
Thorough testing of these algorithms is often time-
consuming and expensive.

� It is very difficult to model on the ground a priori
the behavior of onboard autonomy since, by its
very nature, it utilizes its real-time environment to
determine its next course of action. This translates
directly into difficulty in generating predictions
about the behavior of the spacecraft for users on
the ground. In cases where ground interaction is

required, such as with regards to coordinating
ground events such as DSN passes, the
identification of seemingly arbitrary science
observation targets, etc.; this can be a major
problem.

Instead of utilizing onboard autonomy, the use of
ground automation can often overcome many of these
issues, as follows:
� Since ground automation can be developed using

non-compiled and scripted algorithms, it is more
accessible than onboard flight software, thereby
allowing changes to be made more readily. In
addition, the act of merely updating the algorithms
does not put the space vehicle at risk.

� Ground automation is generally less
comprehensive than onboard autonomy is often
required to be, being programmed to handle most
scenarios, rather than being encoded to handle all
pre-conceived scenarios. In cases where the
ground automation may be lacking, human
intervention is still available to troubleshoot
problems. Because the range of behaviors of
ground automation is generally more limited,
testing the algorithms becomes simpler than
testing a similar onboard autonomy and can be
independent of flight software testing.

� By generating command sequences using ground
automation, sequences become largely
deterministic, thereby making ground modeling
more capable of predicting the spacecraft's
behavior. As the sequences must be developed
prior to transmission to the spacecraft, there is
room for human intervention to add to or modify
the sequence.

Each strategy for controlling the spacecraft has its
place. Onboard autonomy for controlling a spacecraft
can be very useful for closed loop, bounded activities
that are highly dependent on the spacecraft's
environment and don't require ground interaction or
modeling. Ground automation of command sequences
are very useful when ground interaction is required,
modeling is a necessity, and when the spacecraft's
interaction with its environment is well understood and
relatively predictable. In addition, ground automation
generally has a much lower cost for development and
maintenance and more readily provides for ground-in-
the-loop activities. A good spacecraft design will
incorporate both command strategies in a well-
balanced, intelligent manner to improve spacecraft
operability, reduce development and operating costs,
and reduce mission risk.

R. Gladden - Jet Propulsion Laboratory SSC02-IV-2 // Page 13 of 13

So is "autogen" useful?

Since it was first deployed in early 2001, the "autogen"
process and tools have built 7 cruise sequences, over
200 aerobraking sequences, 6 transition-to-mapping
sequences, and, to this writing, 13 mapping sequences
(and counting). In all this time, there have been no
major failures of the tool or process, but there has been
a dramatic reduction in the effort that has been required
to build these sequences. In years past, sequence
system engineers spent many days calculating when

commands should be scheduled and manually
constructing these sequences. With the use of the
"autogen" process, these efforts are largely relegated to
the past, with the time of the sequence system
engineers being better spent verifying the intent and
safety of the sequence. It is anticipated that future
missions will utilize the "autogen" process or its
descendents to continue to automate the sequence
development process, thus enabling safer, more cost
effective missions.

Acknowledgements
Dan Finnerty, Pieter Kallemeyn, Jeff Lewis, Pierre Maldague, Dennis Page, Wayne Sidney, Reid Thomas, Bruce
Waggoner, and Steve Wissler -- all of whom helped make "autogen" what it is.

The work described in this paper was performed at the Jet Propulsion Laboratory (JPL), managed by The California
Institute of Technology (CalTech), under contract to the National Aeronautics and Space Administration (NASA).

Brief Acronym List and Glossary
ABM Aerobraking Maneuver
APGEN Activity Plan Generator
ASP Automated Sequence Processor
Autogen Automatic sequence generation process and/or script
Block A sequence that may be reusable and may include input parameters to change the way it issues

commands; similar to subroutines.
DSMS Deep Space Mission System
DSN Deep Space Network
FINCON Final Conditions (file)
GUI Graphical User Interface
JPL Jet Propulsion Laboratory
MGS Mars Global Surveyor
MSPA Multiple Spacecraft per Aperture
PTE Periapsis Timing Estimator
SAF Station Allocation File
Sequences Files that contain a series of commands, each with a specified time, that will be sent to the

spacecraft.
TCM Trajectory Correction Maneuver
VP View Period (file)

